Continuous Eunction

$$f: A \mapsto B$$

graph $(f) = f(a, f(a)): a \in A \} \subset A \times B$.
When $A \subset R$, $B \subset R$, we can draw f on
paper.

Def:
$$f: E \mapsto E'$$

(E,d) and (E',d') are metric spaces.
Jot $\mathcal{X}_0 \in E$, we say that f is continuous
at \mathcal{X}_0 if $\forall \mathcal{E} > 0$, $\exists \mathcal{S} > 0$, s.t.
 $d(\mathcal{X}, \mathcal{X}_0) < \delta \implies d'(f(\mathcal{X}), f(\mathcal{X}_0)) < \mathcal{E}$.
We say that f is continuous if f is continuous
 $at \mathcal{X}_0$, $\forall \mathcal{X}_0 \in E$. $f(\mathcal{B}_{\mathcal{E}}(\mathcal{X}_0)) \subset \mathcal{B}_{\mathcal{E}}(f(\mathcal{X}_0))$

Example 1 O Show that
$$f(x) = x^2$$
 is continuous.
Let $x_0 \in \mathbb{R}$, $\varepsilon > 0$.

$$d(f(x), f(x_{0})) = | f(x) - f(x_{0})|$$

$$= |x^{2} - x_{0}^{2}|$$

$$= |x + x_{0}| \cdot |x - x_{0}|$$

$$If x - x_{0} < 1, |x + x_{0}| \leq |x - x_{0}| + |2x_{0}|$$

$$< 1 + 2|x_{0}|.$$

$$|f(x) - f(x_{0})| < (1 + 2|x_{0}|) \cdot |x - x_{0}|$$

$$lot \quad \delta = \min \left\{ \frac{e}{H + 2|x_{0}|}, 1 \right\}, \text{ then}$$

$$if |x - x_{0}| < \delta , |f(x) - f(x_{0})| < (2|x_{0}| + 1)\delta$$

$$\leq \varepsilon$$

$$(2) \quad f = \begin{cases} 0, & \text{if } x \leq 0 \\ 1, & \text{if } x > 0 \end{cases} \text{ is not continuous ct } 0.$$

proof Assume f is continuous. Let $\mathcal{E} = \frac{1}{2}$, let $\delta > 0$. $f(\frac{\delta}{2}) = 1$. $|f(\frac{\delta}{2}) - f(0)| = 1 > \frac{1}{2} = \varepsilon$ That means $\neq \delta > 0$ such that $d(0, x) < \delta \Rightarrow d(f(0), f(x)) < \varepsilon$.

$$\begin{array}{l} \Im & f: E \mapsto \mathbb{R} , \quad a \in E , \quad f(x) = d(a, x) \\ \text{is continuous.} \\ \hline p \text{ oof } \quad J_{\text{ot}} \quad \chi_{\text{o}} \in E_{\text{o}} \\ & |f(x) - f(x_{\text{o}})| = |d(x, a) - d(x_{\text{o}}, a)| \\ & \leq d(x, \chi_{\text{o}}) < \delta = \varepsilon \\ & \text{ then }, \quad given \quad \varepsilon > \upsilon , \quad select \quad \delta = \varepsilon. \end{array}$$

Reminder
$$f'(A) = f x: f(x) \in A$$
.
EX: $f(x) = x^2$, $f'([0,4]) = [-2,2]$.

Proposition
$$f: E \mapsto E'$$
, f is continuous \Leftrightarrow
 $f^{\intercal}(U')$ is open in E for all U' open in E' .
proof: \Rightarrow) Assume f is continuous.
Let $U' \subset E$ with U' open. We need to show
that $f^{\intercal}(U')$ is open in E .

Let
$$x_0 \in f^{\dagger}(u')$$
, we need to show that
 $\exists \delta > 0$, s.t. $d(x, x_0) < \delta \Rightarrow x \in f^{\dagger}(u')$.
Since $x_0 \in f^{\dagger}(u')$, $f(x_0) \in U'$.
Since U' is open, $f(x_0) \subset U'$.
 $\exists \epsilon > 0$, s.t. $d(y, f(x_0)) < \epsilon \Rightarrow y \in U'$.
Since f is continuous $ct x_0$, $\exists \delta > 0$, s.t.
 $f(B_{\delta}(x_0)) \subset B_{\epsilon}(f(x_0)) \subset U'$
Then $B_{\epsilon}(x_0) \subset f^{\dagger}(U')$.

(=) Let $X_0 \in E$, E > 0. I need to find 5 > 0 s.t. $f(B_F(X_0)) \subset B_E(f(X_0))$ Since $B_E(f(X_0))$ is open, so is $f^{\dagger}(B_E(f(x)))$ since $X_0 \in f^{\dagger}(B_E(f(x)))$ and $f^{-1}(B_E(f(x)))$ $\exists \delta > 0$ such that $B_{\delta}(X_0) \subset f^{-1}(B_E(f(x)))$. Thus, $f(B_{\delta}(X_0)) \subset B_E(f(x))$ Thus, $f(B_{\delta}(X_0)) \subset B_E(f(x))$ Thus, f is continuous at X_0 . Proposition 1st $f: E \mapsto E'$, $g: E' \mapsto E'$ Assume f is continuous at x_0 and g is continuous at $f(x_0)$. Then $g \circ f: E \mapsto E''$ is continuous at x_0 . proof 1st $\sigma > 0$. since g is continuous at form $\exists \alpha > 0$, s.t. $d(y, f(x_0)) < \alpha \Rightarrow d(g(y), g(f(x_0))) < \varepsilon$ Since f is continuous at x_0 , $\exists \sigma > 0$, s.t. $h(\alpha, x_0) < \sigma \Rightarrow d(f(x_0), f(x_0)) < \alpha$. Thus, $d(x, x_0) < \sigma \Rightarrow d(f(x_0), f(x_0)) < \alpha$

 \Rightarrow dl gof(x), gof(xo)) < \mathcal{E} . Thus, gof is continuous at x_{o} .

Practice E is complete and totally bounded \Rightarrow E is compact. def: E is totally bounded if $\forall E>0$, $\exists n \in N$, and $\chi_1, \dots, \chi_n \in E$.

s.t.
$$E = \bigcup \{ \chi : d(\chi, \chi_i) \leq E \}$$
.
note: totally bounded \Longrightarrow bounded in R.

$$\begin{array}{l} \label{eq:limits} \\ \hline \label{eq:limits} \\ \hline \end{tabular} \begin{array}{l} \hline \end{tabular} f_{1} & f_{2} & f_{2} & f_{3} &$$

 $d(x, x_0) < \delta \implies d(f(x), q) < \varepsilon.$